Abstrakt

A Comparative Study of Feature Extraction Techniques for Speech Recognition System

Pratik K. Kurzekar , Ratnadeep R. Deshmukh , Vishal B. Waghmare , Pukhraj P. Shrishrimal

The automatic recognition of speech means enabling a natural and easy mode of communication between human and machine. Speech processing has vast applications in voice dialing, telephone communication, call routing, domestic appliances control, Speech to Text conversion, Text to Speech conversion, lip synchronization, automation systems etc. Here we have discussed some mostly used feature extraction techniques like Mel frequency Cepstral Co-efficient (MFCC), Linear Predictive Coding (LPC) Analysis, Dynamic Time Wrapping (DTW), Relative Spectra Processing (RASTA) and Zero Crossings with Peak Amplitudes (ZCPA).Some parameters like RASTA and MFCC considers the nature of speech while it extracts the features, while LPC predicts the future features based on previous features

Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert

Indiziert in

Academic Keys
ResearchBible
CiteFactor
Kosmos IF
RefSeek
Hamdard-Universität
Weltkatalog wissenschaftlicher Zeitschriften
Gelehrter
International Innovative Journal Impact Factor (IIJIF)
Internationales Institut für organisierte Forschung (I2OR)
Kosmos

Mehr sehen