Abstrakt

A NOVEL CONTENT BASED IMAGE RETRIEVAL MODEL BASED ON THE MOST RELEVANT FEATURES USING PARTICLE SWARM OPTIMIZATION

P.K.Bhargavi, S.Bhuvana, Dr.R.Radhakrishnan

Content Based Image Retrieval (CBIR) is the application of computer vision techniques to the image retrieval problem, that is, the problem of searching for digital images in large databases. Content-based image retrieval (CBIR) depends on extracting the most relevant features according to a feature selection technique. The integration of multiple features may cause the curse of dimensionality and the consumed time in the retrieval process. The proposed model includes the following steps: (i) Feature Extraction from images database using color coherence vector (CCV) and Gabor filter algorithm to extract the color and texture features (ii) Feature Discrimination using maximum entropy method for replacing numerical features with nominal features that represent intervals of numerical domains with discrete values using Class Attribute Interdependence Maximization (CAIM) algorithm (iii) Feature Selection using Particle Swarm Optimization (PSO) algorithm for extracting the most relevant features from the original features set. CBIR based applications are used in Internet and law enforcement markets for the purpose of identifying and censoring the images.

Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert

Indiziert in

Google Scholar
Academic Journals Database
Open J Gate
Academic Keys
ResearchBible
CiteFactor
Elektronische Zeitschriftenbibliothek
RefSeek
Hamdard-Universität
Gelehrter
International Innovative Journal Impact Factor (IIJIF)
Internationales Institut für organisierte Forschung (I2OR)
Kosmos

Mehr sehen