Abstrakt

Breast Cancer Survivability Predictor Using Adaboost and CART Algorithm

R.K.Kavitha, Dr.D.DoraiRangasamy

Breast cancer is the second leading cancer for women in developed countries including India. Many new cancer detection and treatment approaches were developed, the cancer incidences and death of breast cancer decreased constantly. The patients are concerned about survival time after diagnosis in order to plan regarding their treatments. It is difficult for a physician to have accurate answers about prognosis. Data mining techniques are used to obtain useful information from the large amounts of data which can help the physician for decision making regarding the prognosis. This paper studies the performance comparison of Adaboost algorithm which classifies data as linear combination and CART (Classification and regression trees) which classifies data by constructing decision tree in predicting the survivability of breast cancer patients.

Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert

Indiziert in

Academic Keys
ResearchBible
CiteFactor
Kosmos IF
RefSeek
Hamdard-Universität
Weltkatalog wissenschaftlicher Zeitschriften
Gelehrter
International Innovative Journal Impact Factor (IIJIF)
Internationales Institut für organisierte Forschung (I2OR)
Kosmos

Mehr sehen