Abstrakt

Color Histogram Features for Image Retrieval Systems

Sanmukh.N.Mali, Tejaswini.M.L

Histogram features have proved powerful in the classification of image and object detection . The CBIR most efficient and searches the color based images. Here in this method we use some improved preprocessing steps, preprocessing algorithms and the image classification is analyzed. In CBIR image classification has to be computationally very fast and efficient. In this project a new approach is introduced, which based on low level image histogram features. Color is a main powerful descriptor that often identifies object and extraction scene. The main advantage of this method is the very quick generation and comparison of the applied feature vectors. Histograms are simple to calculate in software and also lend themselves to economic hardware implementations. A popular tool for a real-time image processing histogram-based image retrieval methods in two color spaces were exhaustively compared. The testing also highlights the weaknesses and strengths of the model.

Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert

Indiziert in

Academic Keys
ResearchBible
CiteFactor
Kosmos IF
RefSeek
Hamdard-Universität
Weltkatalog wissenschaftlicher Zeitschriften
Gelehrter
International Innovative Journal Impact Factor (IIJIF)
Internationales Institut für organisierte Forschung (I2OR)
Kosmos

Mehr sehen