Abstrakt

Detection of Retinal Hemorrhage in Fundus Images by Classifying the Splat Features Using SVM

Inbarathi.R, Karthikeyan.R

Abstract— Image mining is the process of searching and discovering valuable information, knowledge in large volume of data. It is applied in Data mining, Image processing, Artificial Intelligence. Diabetic Retinopathy (DR) is eye disorder that affect retina, at severe stage it become vision loss. Early detection of DR is helpful to improve the screening system to prevent vision loss. Retinal hemorrhage is one kind of major abnormality to find the Non-Proliferative Diabetic Retinopathy (NPDR). The objective of our proposed work is to detect retinal hemorrhage for automatic screening of DR using Support Vector Machine (SVM) classifier. To detect retinal hemorrhage, retinal fundus images are taken from Messidor dataset. After pre-processing, retinal images using pixel of same color and intensity, the image is partitioned into non-overlapping area that covers the entire image. Splat and GLCM feature are extracted to improve the classification accuracy. In order to classify the given input images, different classes must be represented using relevant and significant features with the help of selection method that is processed by filter and wrapper approaches. Then hemorrhage affected retina is detected by SVM classifier. Finally classification accuracy is compared with K-Nearest Neighbor (KNN) classifier.

Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert

Indiziert in

Academic Keys
ResearchBible
CiteFactor
Kosmos IF
RefSeek
Hamdard-Universität
Weltkatalog wissenschaftlicher Zeitschriften
Gelehrter
International Innovative Journal Impact Factor (IIJIF)
Internationales Institut für organisierte Forschung (I2OR)
Kosmos

Mehr sehen