Abstrakt

ELUCIDATING THE SELF-FORMATION OF LOW-INCOME SOCIO-ECONOMIC? CHARACTER USING GEOSPATIAL ANALYSIS MODELLING

UmpigaShummadtayar, Kazunori Kokao

This study developed an alternative method for the local analysis of relationships between low-income socio-economics’ character among the various local modelling approaches, Geographical Weighted Regression (GWR). The complexity originates from the integration of spatially and temporally varying factors underlying the interpretation of socio-economic environmental elements. In addition to spatial autocorrelation and spatial nonstationarity exist widely in Geospatial analysis processes, which are incorporated with Ordinary Least Square (OLS) model. The result found GWR models has achieved better performance than the global OLS model, which the individual data on averages are calculated and explained the locational information and link problematic structure on a map. The techniques are applied and generated the exploratory spatial data analysis, to analyse the spatially varying relationships of low-income socio-economic indicators across low-income settlement point’sdatabase of Bangkok, Thailand. Thus, the self-formation of spatial analysis is characterized and explored scale effect on low-income settlement approaches by the location of socio-economic environmental features. It is possible to offer useful alternatives this novel idea joint application of urban planning and policy decision-making when assessing GWR model.

Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert

Indiziert in

Academic Keys
ResearchBible
CiteFactor
Kosmos IF
RefSeek
Hamdard-Universität
Weltkatalog wissenschaftlicher Zeitschriften
Gelehrter
International Innovative Journal Impact Factor (IIJIF)
Internationales Institut für organisierte Forschung (I2OR)
Kosmos

Mehr sehen