Abstrakt

High Frequency and Unstructured Data in Finance: An Exploratory Study of Twitter

William Sanger, Thierry Warin

Objective: In this paper, we investigate the question to know whether information spread over Twitter can be useful to design investment strategies on financial markets.

Methods: We compare the influence of two kinds of messages sent on Twitter over two types of returns concerning firms listed on the S&P500. We use logistic-based models to assess the probability of having certain types of returns based on messages published on Twitter.

Results: Financial tweets are positively correlated with higher intraday and overnight returns (1 to 5% returns) while being negatively correlated with lower returns (0 to 1% returns). Non-financial tweets are not significantly related to such returns.

Conclusion: From a practical standpoint, investment strategies could be designed following these findings to optimize some gain opportunities depending on the investment day, the targeted industry and live activity on Twitter.

Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert

Indiziert in

Google Scholar
Academic Journals Database
Open J Gate
Academic Keys
ResearchBible
CiteFactor
Elektronische Zeitschriftenbibliothek
RefSeek
Hamdard-Universität
Gelehrter
International Innovative Journal Impact Factor (IIJIF)
Internationales Institut für organisierte Forschung (I2OR)
Kosmos

Mehr sehen