Abstrakt

Neural Network Training By Gradient Descent Algorithms: Application on the Solar Cell

Fayrouz Dkhichi, Benyounes Oukarfi

This present paper deals with the parameter determination of solar cell by using an artificial neural network trained at every time, separately, by one algorithm among the optimization algorithms of gradient descent (Levenberg-Marquardt, Gauss-Newton, Quasi-Newton, steepest descent and conjugate gradient). This determination issue is made for different values of temperature and irradiance. The training process is insured by the minimization of the error generated at the network output. Therefore, from the outcomes obtained by each gradient descent algorithm, we conducted a comparative study between the overall of training algorithms in order to know which one had the best performances. As a result the Levenberg-Marquardt algorithm presents the best potential compared to the other investigated optimization algorithms of gradient descent

Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert

Indiziert in

Academic Keys
ResearchBible
CiteFactor
Kosmos IF
RefSeek
Hamdard-Universität
Weltkatalog wissenschaftlicher Zeitschriften
Gelehrter
International Innovative Journal Impact Factor (IIJIF)
Internationales Institut für organisierte Forschung (I2OR)
Kosmos

Mehr sehen