Abstrakt

Optimal Top-K Queries Computing: Sampling and Energetic Development Approach

Marthe Ranjani A, Mrs.Ananthi M

An effective query processing plays an significant role in the unsure data streams. Particularly, manifold top-k queries processing on uncertain data streams obtained from large applications of several fields such as sensor network monitoring and internet traffic control requires periodic execution of queries and sharing results among them. The system that monitors uncertain events in such data streams manipulates the top-k queries. Here the problem is that existing systems were not planned to allow query results sharing which in turn leads to high computation cost and inaccurate response from the system. To overcome these issues (Queries results sharing), the proposed system using a sampling algorithm for sample the top possible worlds from well-known possible worlds based on their high probability. Therefore, proposed system uses an optimal dynamic programming approach that split the multiple queries into number of groups. Then the query groups are scheduled and planned for sharing results to yield minimum computation cost. Accordingly, a faster greedy algorithm is used to reduce the time and storage space of the top-k queries based on the greedy rule. Thus the proposed approach allows sharing computation among multiple top-k queries and generates best plan of query execution.

Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert