Abstrakt

Rule Weight Base Behavioural Modeling of Steam Turbine Using Genetically Tuned Adaptive Network Based Fuzzy Inference System

D. N. Dewangan, Dr. Y. P. Banjare, Dr. Manoj Kumar Jha

In view nonlinearities, steam turbine complex structure of dynamic modelling, selection of suitable configuration of adaptive network based fuzzy inference system (ANFIS) and minimizing the modelling error, a rule weight base behavioural system modelling of steam turbine (genetically tuned ANFIS) model has proposed to solve the problem through the assessment of enthalpy and power output of the system. The accuracy and performance of enthalpy estimation over wide range of operation data has estimated with reference to integral square error (ISE) criterion. This technique is useful in order to adjust model parameters over full range of input output operational data. From this work, it is clearly evident that the error obtained from conventional ANFIS structure is much higher than that of obtained from ANFIS structure after genetically tuning.

Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert

Indiziert in

Academic Keys
ResearchBible
CiteFactor
Kosmos IF
RefSeek
Hamdard-Universität
Weltkatalog wissenschaftlicher Zeitschriften
Gelehrter
International Innovative Journal Impact Factor (IIJIF)
Internationales Institut für organisierte Forschung (I2OR)
Kosmos

Mehr sehen