Abstrakt

Study of Antibacterial Activity of Chitosan on Lyocell and Recycled Polyester Yarns

Saranya Rajamanickam , Krishnaveni Vasudevan

Medical textiles are one of the essential materials for the production of medical garments and have been developed in the past decades. A medical textile is a type of advanced technical textile materials and is classified according to its performance and functional properties as being suitable for medical or hygienic products. Among the vast categories of medical textile products, the hospital textiles are most important and also expected to fulfill the hygienic, comfort and microbial resistance property requirements. The functional requirements of hospital textiles have led to the innovative use of a variety of natural and manmade fibers with enhanced comfort and hygienic properties in the development of new products for medical textiles. The lyocell and polyester fabrics play an important role in the hospital textiles. The new innovation of antimicrobial finishes on the fabric can minimize the transfer of microorganisms on the wearer by creating as a physical barrier. Chitosan is a natural biopolymer and it has unique properties such as biodegradability, non-toxicity and antimicrobial activity. This work is an attempt to develop hospital textiles using lyocell and Recycled polyester fibers. The fibers were converted in to different composition of yarns such as 100% Lyocell, 100% Recycled polyester, 50:50 and 70:30 Lyocell/ Recycled polyester blended yarns using short staple spinning system. The 30sNe counts of yarns were developed in each composition and the chitosan antimicrobial finish was coated on the blended yarns using pad dry cure method. The fibre and finished yarn samples were tested for fibre length, denier, yarn tenacity, yarn evenness and antimicrobial properties. The effects of antimicrobial activity of the chitosan finished yarns were assessed by standard AATCC 147 test method. The different blended yarns test results showed an higher strength and elongation and better antimicrobial activity.

Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert

Indiziert in

Academic Keys
ResearchBible
CiteFactor
Kosmos IF
RefSeek
Hamdard-Universität
Weltkatalog wissenschaftlicher Zeitschriften
Gelehrter
International Innovative Journal Impact Factor (IIJIF)
Internationales Institut für organisierte Forschung (I2OR)
Kosmos

Mehr sehen