Abstrakt

USING HASH BASED APRIORI ALGORITHM TO REDUCE THE CANDIDATE 2- ITEMSETS FOR MINING ASSOCIATION RULE

K.Vanitha and R.Santhi

In this paper we describe an implementation of Hash based Apriori. We analyze, theoretically and experimentally, the principal data structure of our solution. This data structure is the main factor in the efficiency of our implementation. We propose an effective hash-based algorithm for the candidate set generation. Explicitly, the number of candidate 2-itemsets generated by the proposed algorithm is, in orders of magnitude, smaller than that by previous methods, thus resolving the performance bottleneck. Our approach scans the database once utilizing an enhanced version of priori algorithm.Note that the generation of smaller candidate sets enables us to effectively trim the transaction database size at a much earlier stage of the iterations, thereby reducing the computational cost for later iterations significantly

Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert

Indiziert in

Google Scholar
Academic Journals Database
Open J Gate
Academic Keys
ResearchBible
CiteFactor
Elektronische Zeitschriftenbibliothek
RefSeek
Hamdard-Universität
Gelehrter
International Innovative Journal Impact Factor (IIJIF)
Internationales Institut für organisierte Forschung (I2OR)
Kosmos

Mehr sehen