Abstrakt

Cell Communication and Fungal Virulence: A Review

Tinashe J Runyanga

Effective message conveyance is a fundamental aspect for all living organisms. Fungal microbes utilise multifaceted signal transduction systems to perceive and respond to a broad diversity of environmental cues. Well-studied signalling pathways include the protein kinase A/ cyclic AMP (cAMP), protein kinase C (PKC)/mitogen-activated protein kinase (MAPK), cascades, and the calcium–calcineurin signalling pathway. Fungal microbes also rely heavily on effector protein secretion upon coming into contact with the appropriate host cell surface. Intra or inter-cellular communications do exist during sex in the true fungi (Ascomycota and Basidiomycota). Sex pheromones are implicated to mediate mating partner recognition. Unravelling the mechanisms of fungal communication and response to environmental stimuli could open up new technological innovations on how to manage fungal contamination and infestations within biological ecosystems. However, due to the complexity of microbial cellular systems and their species diversity, much of the information and knowledge gained over years on fungal communication is still scattered, a scenario which could hinder research initiatives that can reduce fungal virulence among agricultural systems. Therefore, this review discusses cellular communication pathways that directly or indirectly lead to fungal virulence in order to provide research insights towards virulence reduction. Mechanisms discussed include, but are not limited to, signal transduction systems, cell surface receptors, effector proteins and sex pheromones.

Indiziert in

Index Copernicus
Google Scholar
Academic Journals Database
Open J Gate
Genamics JournalSeek
Academic Keys
ResearchBible
The Global Impact Factor (GIF)
CiteFactor
Kosmos IF
Elektronische Zeitschriftenbibliothek
Gelehrter
International Innovative Journal Impact Factor (IIJIF)
Internationales Institut für organisierte Forschung (I2OR)
Kosmos
Genfer Stiftung für medizinische Ausbildung und Forschung
Geheime Suchmaschinenlabore

Mehr sehen