Abstrakt

Flexible, Polymer-Based Microwave Devices: Flexible Antennas and Performance Evaluation

Iurii Cherukhin1*, Siping Gao1, Felix Zander2, Alena Dashkova3, Yong Xin Guo1

In this work, we have investigated polymer-based flexible antennas from commercial and modified polymers, which are competitive to rigid PCB technology. Classical designs of the patch and bow-tie antennas have been realized and showed that the realized gain can get up to 9.16 dBi for the patch and 7.9 dBi for the bow-tie antennas. The effects of the dielectric loss and conductivity on the antennas’ performance in S-band have been analyzed in order to find limits for further material engineering and the optimum trade-off between microwave and mechanical performance. The bending effects have been investigated, and it has been found that e-plane bend inside can have the focusing effect and boost the antenna gain from 8.6 dBi to 10.1 dBi with the frequency shit from 2.5 GHz to 2.4 GHz for the patch and 7.9 dBi to 11.3 dBi at 3.1 GHz for the bow-tie antennas. The non-classical π-shaped conductors’ edges lead to additional fringing fields, which has an effect on the antenna’s gain, which can be exploited for further performance improvements. The new recipes for low-loss, low-Dk dielectric materials, and chemical integration between conducting polymers and PDMS have been presented in this work. The current molding process allows us to step out from 2D PCB designs and build 3D structures or hybrid PCB-3D components with a certain freedom in material properties. Additionally, the new material exhibits unique mechanical properties, i.e., low density, temperature insulation, vibration and acoustic dumping effects, low humidity absorption, etc., which extends the material application to other fields.

Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert

Indiziert in

Index Copernicus
Open J Gate
Academic Keys
ResearchBible
CiteFactor
Kosmos IF
RefSeek
Hamdard-Universität
Gelehrter
International Innovative Journal Impact Factor (IIJIF)
Internationales Institut für organisierte Forschung (I2OR)
Kosmos
Genfer Stiftung für medizinische Ausbildung und Forschung
Geheime Suchmaschinenlabore

Mehr sehen