Abstrakt

Friend Recommendation on Social Network Site Based on their Life Style

Ramya R, Bonshia Binu

Social network sites attracted millions of users. In the social network sites, a user can register other users as friends and enjoy communication. Existing social networking sites recommend friends to users based on their social graphs, which may not be appropriate. In proposed system friends recommends to users based on their life styles instead of social graphs. It done by means of sensor rich smart- phone serve as the ideal platform for sensing daily routines from which people’s life styles could be discovered. Unsupervised learning method is used. Achieve an efficient activity Recognition and reduce the false positive of Friend Recommendation. Friendbook integrates a feedback mechanism. Finally the results show that the recommendations accurately reflect the preferences of users in choosing friends.

Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert

Indiziert in

Chemical Abstracts Service (CAS)
Google Scholar
Open J Gate
Academic Keys
ResearchBible
The Global Impact Factor (GIF)
CiteFactor
Kosmos IF
Elektronische Zeitschriftenbibliothek
RefSeek
Hamdard-Universität
Weltkatalog wissenschaftlicher Zeitschriften
IndianScience.in
Gelehrter
Publons
International Innovative Journal Impact Factor (IIJIF)
Internationales Institut für organisierte Forschung (I2OR)
Kosmos

Mehr sehen