Abstrakt

Cytotoxic Effect of Turbo coronatus Extract on Cancer Cell Lines

Majid Honari, Akram Tehranifard, Mahdi vazirian, Ali Salaritabar, Hassan Sanati, and Alireza Madjid Ansari

In this research, cytotoxic effects of different fractions of Turbo coronatus extract on breast cancer cell lines MDAMB468 and T47D and animal (NIH/3T3) and human (MCF10A) normal cell lines were investigated by MTT method. Extraction of mollusck (Turbo coronatus) with maceration (72h) was performed in 96% ethanol and the resulting extract was divided into fractions of chloroform, ethyl acetate and the remaining methanol. Treatment of cultured normal and cancer cells was performed during timespans of 24, 48 and 72 hours with different concentrations of ethanol extract and fractions. After determining the lethal concentration of 50% of the cells (LC50), ethyl acetate fraction had the strongest effect on cell line MDA-MB468 (LC50 equal to 12.04 μg/ml ± 1.61 μg/ml) and chloroform fraction had the strongest effect on the cell line T47D (LC50 equal to 19.77 μg/ml ± 9.97 μg/ml). The effect of extraction and fractions on all lines was also investigated in terms of selectivity and no fraction had specific effect on cancer cell lines than normal line of human breast (selectivity index <3); while in the case of comparing the effect of animal normal line cell, relative specific effect of some fractions is anticipated. While cytotoxic effects of studied alcoholic extraction and fractions on three cancer cell lines were considerable, the effect of these extracts and fractions on normal cell lines were also considerable. Thus, only by considering specific conductance of existing effective compounds in the studied fractions to cancer tissue, the effective compound existing in this mollusk can be more considered in the future studies for use in breast cancer treatment. Also, it seems that for specific investigation of cytotoxic effect, it is better to use normal human instead of normal animal lines.

Indiziert in

Chemical Abstracts Service (CAS)
Index Copernicus
Open J Gate
Academic Keys
ResearchBible
CiteFactor
Elektronische Zeitschriftenbibliothek
RefSeek
Hamdard-Universität
Gelehrter
International Innovative Journal Impact Factor (IIJIF)
Internationales Institut für organisierte Forschung (I2OR)
Kosmos
Genfer Stiftung für medizinische Ausbildung und Forschung
Geheime Suchmaschinenlabore

Mehr sehen